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a b s t r a c t

A method for solving problems when flows with dissimilar Bernoulli constants interact is proposed. The
method is used to investegate the problem of a steady plane-parallel flow of an ideal incompressible
fluid around a point source from which a fluid, with a density and overall pressure, differing from the
corresponding free-stream values, enters. Calculations, carried out over the whole range of variation of
the governing parameter, characterizing the energy of the fluid entering from the source, demonstrate
the effectiveness of the method.
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The basic difficulty in solving problems involving the interaction of flows with dissimilar Bernoulli constants is in finding the previously
unknown interface line which is the line of tangential discontinuity of the velocity and is determined from the impermeability and pressure
continuity conditions. When investigating of similar problems in the exact formulation, the traditional route is to introduce, for each fluid
layer, its own domain of the parametric variable with subsequent derivation of the equations of the relation between the boundary points
of these domains. This method has been used by a number of authors.1–9

A fundamentally different approach10–12 consists of mapping the whole flow domain onto a certain canonical domain of the parametric
plane. In this case, the required functions are chosen in such a way that the boundary conditions on segments which are not interface lines
are satisfied by to the construction. This procedure turned out to be quite effective and has been successfully used.13–16

An additional serious mathematical difficulty, associated with the simulation of the flow close to the critical point, arises in solving
problems involving the collision of fluid flows with dissimilar Bernoulli constants. A cuspidal point appears on the boundary of the flow
domain (with the smaller Bernoulli constant), and it is difficult to use the method of conformal mappings in the neighbourhood of this
point. Such problems have been investigated earlier.6,8

The problem of calculating the flow around a point source is, in fact, a model problem concerning the collision of jets. One of the
procedures for solving this problem has been presented in a monograph,6 where the solution is reduced to an iterative process for finding
the two functions. In the numerical implementation of this process, simplifications are introduced into the formulae for the calculations
close to the cuspidal point. Another method for solving the same problem has been proposed,15 which is based on the realization of
Sedov’s idea of introducing a stagnation zone in the neighbourhood of the critical point, which enabled the above mentioned mathematical
difficulties to be avoided by a modification of the flow model. This procedure led to the need to satisfy conditions for the closure of the
boundary of the stagnation zone and to organize an additional iterative process. The problem of the projection of a symmetric wing profile
with discharging a reactive flow towards a subsonic flow has also been solved by the introducing a stagnation zone in the neighbourhood
of the critical point.16

A method for solving problems of the interaction of flows with dissimilar Bernoulli constants, which is illustrated by solving the problem
of the flow around a source, is proposed below. The serious mathematical difficulties, associated with the simulation of the flow close to
the critical cuspidal point, are successfully overcome by the choice of a new required function. The problem is solved without any of the
simplifying assumptions or modifications of the flow model which have been used previously.6,15 This method can be used to solve other
direct and inverse problems concerned with the interaction and collision of flows. In a number of cases, it does not require the introduction
of a parametric plane at all: the problem is directly solved in the flow domain. The number of required functions is minimal here and is the
same as the number of boundary lines.
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Fig. 1.

1. Formulation of the problem

In the physical plane z = x + iy (Fig. 1), a steady plane-parallel flow of an ideal incompressible fluid c with density � and a velocity V∞
at infinity flows past a point source M with a specified flow rate Q. The parameters of the fluid discharging from the source, the density
�J and the velocity V∞J at infinity, differ from the corresponding free-stream and the subscript j is appended to them. The dimensionless
parameter � = �jV

2
∞j

/(�V2∞ − 1) characterizes the energy of the fluid discharging from the source. The interface line of the media Lz is the
line of a tangential jump in the velocity, which is given by the formula

(1.1)

that follows from the Bernoulli integrals for the two flows and the pressure continuity condition on passing through Lz. The origin of
coordinates was chosen to be at the critical point A and the abscissa is directed along the free-stream velocity. The position of the source
M will then be determined by the coordinate xm which is not known in advance.

It is required to determine the shape of the interface line Lz of the media and the position of the critical point A with respect to the
source, that is, to determine xm.

2. Solution of the problem

We will denote the free-stream domain by G+ and the jetflow domain by G−. Under the assumptions made, a complex flow potential
w(z) exists in the domain G+ and a potential wj(z) in the domain G−.

Suppose �(�) is a point on the line lz (the upper half of the line L) with an arc abscissa measured from the point A(0 ≤ � ≤ ∞) and �(�) is
the argument of the velocity vector at this point which, on the line lz, is identical to the slope of the tangent (since lz is a streamline). Then,

(2.1)

By virtue of condition (1.1) and the fact that the velocity of one or both the flows vanishes at the point A, the relation

(2.2)

holds. At infinity, the line lz must merge with the horizontal asymptote

(2.3)

that is,

(2.4)

Multiplying relation (1.1) by e−2i/�, we obtain

and, on then dividing by �V2∞, we shall have

(2.5)
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We now introduce the functions

(2.6)

which are analytic in the domains G+ and G− respectively. The constants are chosen such that

(2.7)

Then,

(2.8)

follows from equality (2.5).
If it is assumed that the function �(�) is known, then the line lz can be found by integrating Eq. (2.1) and the function �(�) = �(�) can be

found from equality (2.8). Relation (2.8) is then a condition in the problem of determining the piecewise analytic function

through the specified discontinuity (Refs. [17,31]) Taking account of the fact that the function �−(z) has a second order pole at the point
z = xm, we can write the solution of this problem in the form

(2.9)

where �(z) is a Cauchy-type integral. Note that, by virtue of symmetry,

(2.10)

The representations (2.8)–(2.10) constitute the essence of the proposed method of solution and enable us to express the velocity fields
in the flow domain in terms of a single unknown function �(�) which determines the shape of the interface line directly in the physical
plane. Actually, the behaviour of the function �(z) in the neighbourhood of the point M is known:

whence it follows that

In order to determine the constants C0 and C1, we find the first term of the expansion of the function �(z) in powers of 1/z for large |z|.
Using formulae (2.10), we obtain

We now take account of relations (2.1) and (2.8) and derive the equality

and, when this and relation (2.7) are taken into account, we conclude from solution (2.9) that C0 = 0. It now follows from equality (2.9)
that the required expansion has the form

(2.11)

It follows from this and from the first formula of (2.6) that, in the domain G+ for large |z|,

(2.12)



N.B. Il’inskii et al. / Journal of Applied Mathematics and Mechanics 73 (2009) 290–295 293

We now consider a semicircle of infinitely large radius in the upper half-plane and calculate the flow rate q of the fluid through the part
of this half-plane belonging to the domain C+. Using expansion (2.12), we find that

However, the axis of symmetry and the curve lz are streamlines and, therefore, q = 0.
Consequently, C1 = 2(1 + �)y∞/	 or, when account is taken of equality (2.3),

(2.13)

whence

(2.14)

Note that, if the constant C1 is specified in an arbitrary manner, then, in the case of the functions (dw/dz)2 and (dw)/(dz)2, first-order
zeroes appear on the axis of symmetry. Their existence leads to the appearance of equipotential segments on this axis, which changes the
whole flow pattern. Condition (2.13) is, in fact, a necessary condition for the absence of such zeroes.

According to formula (2.8) for � and equalities (2.2), �+(0) = �−(0) at the critical point. Then, recalling the definitions (2.6) and taking
account of equality (2.2), we obtain

(2.15)

Substituting expression (2.9) into this formula, we write the quadratic equation

from which, when account is taken of (2.14), we determine that

(2.16)

Calculations showed that the radicand is always positive. It is necessary to take the root with the plus sign when � < 0 and the root with
the minus sign when � > 0. If � = 0, then a = 1 and, according to definition (2.8), �(�) ≡ 0 and, definition (2.10), �(0) ≡ �(z) = 0. Consequently,
the quadratic equation has one root (xm = Q/2	V∞j)

Hence, if the function �(�) is found, the function �(z) and, therefore, the complex conjugate velocities dw/dz and dwj/dz are determined
in the whole of the flow domain.

3. Iterative process scheme

The following iterative process is organized in order to find the unknown function �(�). The function �(�) must satisfy conditions (2.2)
and (2.4). The initial approximation to it can be chosen in the form

where C is a real positive constant and �0 is determined using formula (2.2).
The iterative procedure contains the following steps:
integrating Eq. (2.1), we find the line lz, using formula (2.10), we determine �(�), from equality (2.16), we find xm, using formula (2.9)

and taking account of the Sokhotskii formulae, we calculate �+(�) and �−(�) on the line lz and, from the definitions (2.6) of the functions
�+(z) and �−(z), we find a new approximation to the function �(�):

It is necessary to take the branch of the function arg (z) from condition (2.4).
This iterative process has to be continued until the following condition is satisfied

where 
 is a certain small positive number.
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Fig. 2.

Note that this problem is characterized by just one dimensionless parameter �, and the quantity y∞ = Q/(2V∞j) can be taken as the
characteristic length. At the same time, it can be assumed, without loss in generality, that V∞ = � = �j = 1 and, then,

(3.1)

4. Special cases

The solution of the problem in the special cases when � = 0 and � = ∞ can be successfully obtained analytically. If � = 0, then, according
to equality (3.1), V∞j = V∞ = 1, the Bernoulli constants of the two flows are the same, there is no tangential discontinuity in the velocity and
there is a common complex potential, which is equal to the sum of the complex potentials of the external flow and the source.

In the case when � = ∞, the velocity Vj on the line lz will be constant and equal to a certain value V0, which can be arbitrarily assigned.
The solution of this problem is easily constructed using jet theory methods. It can also be proved that the shape of the line lz is identical in
this special case to the shape of the free surface in the classical Helmholtz problem (historically, this is the first of the problems solved in the
jet theory and it is a special case of the problem of flow in a Barda nozzle when the walls of the outer channel are removed to infinity (see
Ref. [18]). If the Schiffman reflection method (Ref. [19], p.347) is applied to the lower half of a Helmholtz flow (the domain G1, see Fig. 2),
that is, the complex potential function is analytically extended across the free surface, then the upper half of the flow from the source (the
domain G2) is obtained. In this case, the line lz will be a common stream line with a constant velocity.

5. Results of calculations

A series of calculations was carried out for different values of the parameter � (see Fig. 3, for ease of comparison the origin of the
coordinates was made coincident with the position of the source). The results of the calculations when � ≥ 0 agreed with the results
obtained earlier6,15 and with the results in the special cases. Calculations were additionally carried out for the case when −1 < � < 0 which
had not been previously investigated. The results are shown by the solid lines for � > 0, the dotted line for � = 0 and the dashed lines for
� < 0. It has been noted 15 that, in the case when � ≥ 0, the interface lines of the media have a common intersection point which is also

Fig. 3.
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visible in Fig. 3. However, when � < 0, the lines lz no longer pass through this point. We mention that, if � → −1, then the flow in the domain
G+ degenerates into a homogeneous flow and xm → ∞.
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